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Abstract

Fecal indicator bacteria (FIB) are monitored at beaches to assess water quality and associ-

ated health risk from recreational exposure. However, monitoring is generally conducted

infrequently (i.e. weekly or less often), potentially leading to inaccurate assessment of water

quality at a beach at the time of use. While some work has shown that FIB in marine environ-

ments can vary over short (e.g. subhourly) time scales, that work has been mainly focused

on ‘open’ beaches. ‘Enclosed’ beaches—those that are partially barriered from exchange

with offshore water and thus have different residence times and mixing dynamics in the

nearshore environment—have been less studied. Here we present results from a high-fre-

quency (once per 30 minutes) FIB sampling event conducted within a Central California,

USA, harbor over 48 hours. FIB concentrations at this enclosed site were more variable at

high-frequencies than what has been reported at open beach sites. Correlation and regres-

sion analyses showed FIB concentrations were most strongly associated with chlorophyll a

concentration, turbidity, wind speed, and tide level. Results indicate the importance of mea-

suring FIB concentrations and explanatory environmental parameters at appropriate tempo-

ral resolutions when conducting water quality monitoring or source tracking studies. Overall,

this work highlights how high-frequency sampling can effectively provide information about

water quality dynamics at beaches of interest.

Introduction

Beaches are monitored worldwide for fecal indicator bacteria (FIB) in order to assess microbial

water quality. FIB have been linked to the presence of enteric pathogens and exposure to ele-

vated levels of FIB may correspond to increased risk of illnesses such as gastroenteritis and

respiratory infection [1, 2]. It is estimated that up to 90 million illnesses and costs of over $2

billion annually can be attributed to poor water quality at United States (US) beaches [3].

Thus, it is important to conduct routine monitoring in order to assess immediate health risk

and inform the public, and guide remediation efforts of chronically contaminated sites [4].

In the US, most municipal health agencies sample beaches in their jurisdictions approxi-

mately once per week or less often [5, 6]. However, sampling at this temporal resolution may
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not be sufficient to understand beach water quality dynamics. FIB fate and transport are gov-

erned by environmental drivers like precipitation, solar irradiation, tidal forcing, and currents

(among others), all of which vary on finer temporal scales [7, 8]. Single, infrequently-collected

samples may not represent current FIB levels (or those hours later), leading to inaccurate

water quality assessment and public notification [9]. However, it is untenable to continuously

monitor FIB concentrations. While physical sensors can provide instantaneous measurements

of parameters like temperature, salinity, or pressure (and thus can log data at a frequency< 1

Hz if needed), there are no such sensors for FIB. FIB concentrations are typically measured

using culture-based methods that require up to 24 hours to complete. While rapid test meth-

ods such as qPCR-based assays are increasingly utilized to measure FIB [10], those assays still

require approximately 6 hours for completion on top of the time needed for sample collection,

sample transportation, and result dissemination. Moreover, beach management agencies have

limited fiscal and staffing resources which prevent higher-frequency monitoring of beaches

[5].

Given these constraints, strategic sampling based on knowledge of FIB variability in the

environment and its drivers is needed. Because environmental parameters like tide, solar irra-

diance, winds, and water temperature are either easily measurable or predictable, discerning

their role in FIB fate and transport at a given beach can help in designing proactive sampling

programs and in developing predictive models which can provide more frequent water quality

data [11, 12]. Yet for the many US beaches that are sampled weekly or less frequently, many

years would be needed to build a dataset that contains the range of each environmental param-

eter sufficient to do so. Alternatively, high-frequency sampling over short durations of time

could be an effective methodology for acquiring the data needed to understand FIB variability

at a beach. This method involves sampling water at regular, short intervals (e.g., once every 30

min) for 1–2 days to collect FIB and environmental data across diverse meteorological and

oceanic conditions. There have been some studies that use this technique to study variability

of FIB concentrations in beach water [13–15]. Boehm (2007) measured Enterococcus concen-

trations in marine water at ten minute intervals at two California beaches, identifying ‘patchy’

behavior in the FIB concentrations and significant, yet site-varying, associations between FIB

concentrations and tide level [15]. Searcy and Boehm (2021) found that FIB concentrations

obtained during a single high-frequency sampling event were sufficient to develop machine

learning-based predictive FIB models that perform on par to those developed using years-long

datasets [16].

While these studies have provided insight into the temporal variability of FIB at marine

beaches, they detail observations collected at ‘open’ beaches—or beaches unimpeded from

mixing with offshore waters. Conversely, we are not aware of work examining subhourly FIB

variation at ‘enclosed’ beaches such as those within harbors, marinas, estuaries, and lagoons.

Enclosed beaches that are barriered from waves and associated currents offer protection for

both wildlife to have sanctuary and humans for commercial, cultural, and recreational pur-

poses. However, they can also be subject to chronic FIB contamination [6] likely due to rela-

tively long flushing times [17] and their proximity to human development. Thus there is a

need to study the temporal dynamics of water quality at enclosed beaches in order to provide

guidance on when they should be monitored and how they should be managed differently

than open beaches.

The aims of our study were to examine subhourly FIB variability and to determine the

extent in which FIB concentrations covary with environmental parameters at an enclosed

beach. Here we present the results from a high-frequency sampling event conducted over 48

hours at a Central California harbor beach. We analyze the overall and high-frequency vari-

ability in FIB data collected at subhourly intervals during the sampling event. Using
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correlation and regression analyses, we compare these datasets to simultaneously collected

environmental data. Results provide insight into FIB fate and transport at enclosed beaches

and can be used to guide future monitoring, modeling, and restoration efforts at these sites.

Materials and methods

Study site

The study was conducted at Pillar Point Marsh Beach (37.502 N, 122.493 W), an approximately

1 km long sandy beach enclosed within the Pillar Point Harbor in Half Moon Bay, California

(Fig 1). The beach is one of several recreational beaches contained by the harbor jetties where

the public fishes, kayaks, and swims. In recent years, the beaches within Pillar Point Harbor

have experienced relatively poor water quality as FIB concentrations frequently rise above the

State of California’s regulatory thresholds [6]. As such, the harbor has been the site of a source

tracking study [18] and has been declared impaired under the US Clean Water Act [19].

The harbor also supports a sport and commercial fishing fleet, a yacht club, and waterfront

restaurants. The land cover surrounding the harbor is a mixture of residential, industrial, agri-

cultural, and undeveloped salt marsh; three creeks drain into the harbor. The region has a

Mediterranean climate, with cool, dry summers often with windy or foggy conditions, and

Fig 1. Map of study site at the Pillar Point Harbor. Basemap reprinted under a CC BY license, with permission from CARTO (https://carto.com/),

original copyright 2018.

https://doi.org/10.1371/journal.pone.0286029.g001
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slightly colder and relatively wetter winters. Annual precipitation averages approximately 670

mm [20], falling mostly in the months between October and April.

High-frequency sampling event

We conducted a high-frequency sampling event at the beach site. Between 8:00a PST August

1st, 2022 to 7:30a PST August 3rd, 2022, water samples were collected every 30 minutes (N = 96

samples). An additional sequence of samples was collected between 11:01a PST and 11:29 PST

on August 2nd, 2022 (chosen due to available sampling personnel) at a rate of 1 per minute

(N = 29 samples); this sequence of sampling will be referred to hereafter as the ‘sprint’ sam-

pling event (as opposed to the ‘main’ sampling event).

Immediately upon collection, samples were stored in the dark and on ice. Samples were

processed in batches every six hours using IDEXX defined substrate assays (IDEXX, West-

brook, ME) to enumerate three FIB: total coliforms (TC), Eschericia coli (EC), and Enterococ-
cus (ENT). TC and EC were measured using Colilert-18, and ENT using Enterolert. 10 ml of

environmental sample water was diluted into 90 ml of pH 7.2 Butterfield’s phosphate buffer

(Thermo Scientific, Waltham, MA) along with the IDEXX reagent, deposited into IDEXX

Quanti-Tray 2000s, and incubated at the vendor-specified temperatures for the required length

of time. After incubation, samples were read according to the manufacturer’s instructions and

recorded in units of Most Probable Units (MPN)/100 mL. Using this method, the lower and

upper limit of detection (LOD) of all three FIB were 10 and 24,196 MPN/100 mL, respectively.

A negative control blank consisting of 90 mL of phosphate buffer and 10 mL of distilled water

was prepared during each batch; all controls measured below the LOD for FIB.

Additional water quality parameters were collected at each 30-minute sampling point.

Water temperature, salinity, and chlorophyll a concentration were measured using a YSI 6600

multiparameter water quality sonde (YSI Incorporated, Yellow Springs, OH). Turbidity was

measured using a portable turbidimeter (HF Scientific, Fort Myers, FL) and solar irradiance

was measured using a spectroradiometer (International Light Technologies, Peabody, MA).

Calibration procedures for each instrument are described in the Supporting Information.

We aggregated third-party tide and meteorological data collected from internet sources to

supplement the field data. Tide level data were provided by NOAA (https://tidesandcurrents.

noaa.gov/) and were collected in six-minute intervals at the San Francisco station (approx. 35

km from the site). Meteorological data were available in 30-minute intervals and were pro-

vided by the National Centers for Environmental Information (https://www.ncei.noaa.gov/)

and collected at the Half Moon Bay airport (1 km from the site); parameters included air and

dew point temperature, wind speed and direction, air pressure, precipitation, visibility, and

cloud coverage category. Third-party data sources provided quality assurance information on

their websites to verify data veracity; specific station details are provided in S1 Table. No data

describing the discharge of the creeks into the harbor was available.

There was no need to obtain permission for conducting this study (including field sampling

and lab processing) because water sample collection at our study site is not prohibited, and no

animals were captured or killed in our experiment. All raw data collected and collated as part

of this study are available at the Stanford Digital Repository (https://purl.stanford.edu/

ns310jc1934).

Data processing and analysis

The sampling event data were digitized by manually entering values into spreadsheets in dupli-

cate by a single technician for quality assurance purposes. When the duplicate data entries did

not agree, the discrepancy was resolved by a second technician by referencing the original data
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sheets from the laboratory. FIB data were then merged with the third-party data to form a

complete dataset. All subsequent data processing and analyses were performed using the

Python programming language (Python 3.7.6, python.org).

FIB concentrations measured below the lower LOD (i.e. < 10 MPN/100 mL) were replaced

with a value of 1 MPN/100 mL to better facilitate identification and analysis; no samples mea-

sured above the upper LOD. It is to be noted that this choice of replacement value does not

affect the hurdle modeling conducted below. FIB concentrations were categorized as to

whether they exceeded the State of California’s regulatory standards for marine waters [21].

For TC and ENT, the exceedance thresholds are 10,000 MPN/100 mL and 104 MPN/100 mL,

respectively; there is no such limit for E. coli, so we used the regulatory limit for fecal coliform

(400 MPN/100 mL) to categorize EC samples because California agencies use both E. coli and

fecal coliform interchangeably for beach management [12]. FIB concentrations were log10

transformed prior to statistical inference and modeling to reduce skewness and variability.

No missing values were found in the water temperature, tide, visibility, and cloud coverage

data. Less than 5% (N = 4) of the values of each of the remaining environmental parameters

were identified missing. Missing data points were replaced with values linearly interpolated

from neighboring values in the time series. Chlorophyll a concentration and turbidity were

log10-transformed to reduce skewness and variability; because these parameters can be zero-

valued, a value of 1 was added to each data point prior to log10-transformation. Solar irradi-

ance data were not collected between sunset and sunrise; data points during these times were

assigned a value of 0 W/m2. Tide level was classified as high or low if it was above or below 1

meter above mean lower low water, respectively. Alongshore and offshore wind speeds were

calculated from raw wind speed and direction values and the angle normal to the beach (140

degrees from true north). Cloud coverage was converted into dummy variables representing

three categories: clear, overcast, and partly cloudy.

Measures of central tendency and dispersion (e.g., means, medians, and standard devia-

tions) were calculated. Variation in the FIB data was assessed in multiple ways. We calculated

the coefficient of variation (CV, defined as the ratio between the standard deviation and mean)

to assess variability across the entire sampling event. High-frequency variability was deter-

mined by calculating the normalized difference in concentration between adjacent samples

(defined as δi(t) = |c(t+i)–c(t)| / μ, where i is the sampling interval (e.g. 30 minutes), c(t) and c

(t+i) are the FIB concentrations of samples collected at time t and t + i, and μ is the mean FIB

concentration across the entire time series. In addition to calculating δi for both the 30-minute

interval ‘main’ sampling event data (δ30m) and the ‘sprint’ data (δ1m), we also calculated δi

using downsampled versions of the 30-minute interval dataset to identify how variability of

FIB changes with different resolution sampling rates. This involved resampling the data at

intervals of 1, 2, 3, 6, and 12 hours. Because resampling the overall dataset to lower frequencies

yields multiple choices of where the resampled dataset can start, there were multiple resampled

datasets available from which to calculate δi. For example, resampling the data to an interval of

1 hour yielded two datasets: one where the first sample occurred at 8:00a and one where the

first sample occurred at 8:30a. Thus, we calculated the mean and standard deviation of δi

across all resampled datasets for each interval.

While δi was used to assess the concentration difference in adjacent samples, we also deter-

mined the proportion of samples in which the detection status (i.e., FIB measured above or

below the LOD) differed between two adjacent samples; the same was done for the regulatory

exceedance status (i.e. FIB measured above or below the CA State threshold) of adjacent sam-

ples. Finally, we assessed the extent of serial correlation in the FIB concentrations using the

partial autocorrelation function. While we attempted to apply other common time series tech-

niques such as autoregressive-moving average (ARMA) models and spectral analysis, no
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illuminating patterns emerged and thus the analyses were omitted from the manuscript for

brevity.

Associations between the FIB data and environmental parameters were assessed; the follow-

ing analyses were conducted using the 30-minute interval FIB data only. Correlations were cal-

culated using Spearman’s rank correlation. To determine temporal lag effects on FIB, cross-

correlation analysis was conducted between FIB and environmental observations temporally

shifted up to 3 hours. We categorized FIB concentrations by temporal environmental condi-

tions including if the sample was collected during the day or night, during high or low tide

level (i.e. greater or less than 1m relative to mean lower low water), and cloud category. Com-

parisons of central tendency between environmental categorizations of FIB concentrations

were performed using the Kruskal−Wallis test.

Descriptive models (intended to capture associations instead of determine causality [22])

were developed using the FIB and environmental variable datasets. The aforementioned envi-

ronmental parameters collected during the sampling event and from third-party sources were

used as model inputs (i.e. independent variables). In addition to their values observed at the

time of FIB sample collection, we also used temporally-lagged versions of these environmental

variables with a lag of up to three hours prior to represent potentially delayed effects of an envi-

ronmental driver on FIB concentrations. To reduce multicollinearity in the modeling dataset,

we kept only the version of each environmental variable with the largest magnitude Spearman

rank correlation with FIB concentrations. For example, because dew point temperature mea-

sured 30 minutes prior to sampling had the highest Spearman rank correlation to ENT con-

centrations, the remaining lagged versions of the dew point temperature variable were

excluded. Finally, the number of hours away from solar noon and the time of day (i.e. daytime

or nighttime) were also included in the modeling dataset. Variables were normalized prior to

use in modeling by first subtracting their mean value and dividing by their standard deviation;

thus the variable coefficients in the following models provide a relative measure of their impor-

tance to explaining FIB behavior.

Because samples measured below the LOD were present in the FIB data (i.e. the datasets

were zero-inflated), we used a ‘hurdle’ model to model FIB concentrations. Hurdle models

treat the probability of occurrence of an event and the magnitude of an event separately [23,

24]. As such, hurdle models are ‘two-part models’ where the first part classifies a binary out-

come of whether an event has occurred and the second part estimates the magnitude of the

event given that it has occurred. In this case, the first (binary) model classified whether a FIB

sample was measured above the LOD, and the second (regression) model estimated the FIB

concentration in a sample given that it was measured above the LOD.

We used a random forest classifier as the binary model to predict whether FIB in a sample

was above the LOD. Random forests (RF) are ensemble models where the prediction is an

aggregate of the predictions of multiple decision ‘trees’; we chose to use RFs because they are

non-parametric (i.e. they make no underlying assumptions about the distributions of the data

[25] and they yield additional information describing the relative importance of model ‘fea-

tures’ (i.e. variables) [26]. RFs were fit using the RandomForestClassifer algorithm with the sci-
kit-learn package in Python. The default parameters of the algorithm were used, including 100

trees per forest, bootstrap resampling when fitting individual trees, and a random subset of

variables per tree split equivalent to the square root of the total number of features [27]. In

order to reduce feature importance bias [28], the final set of variables were selected by assess-

ing each variable’s importance using a permutation feature importance algorithm [27, 29]. The

permutation feature importance of a given variable is indicative of how dependent a model is

on that variable and is calculated as the change in model accuracy upon fitting a model after

randomly shuffling the variable’s data five times. Variables with a mean permutation feature
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importance equal to 0 were removed and the final RF was fit using the remaining. The result-

ing feature importance values were thus normalized to the final variable set.

In the second part of the hurdle models, FIB concentration (given that it is above the LOD)

was modeled with generalized least squares (GLS) regression. GLS models are an extension of

ordinary least squares models but are equipped to address serial correlation in the model resid-

uals. We implemented the GLSAR algorithm with the statsmodels package in Python, and used

a constant intercept, five iterations to achieve model convergence, and a second-order autore-

gressive structure to model the residuals as we found significant serial correlation to second

order in the FIB data. The output of the GLS models was log10-transformed FIB concentration.

Models were initially fit using all independent variables and variance inflation factors (VIFs)

were calculated to ensure the assumption of variable independence in linear regression was

met. If variables had VIFs than 5, the variable with the greatest VIF was removed and the

model was refit. This process was repeated until the VIF of each variable was less than 5. Final

model coefficients and their p-values were further assessed to determine the effect of environ-

mental variables on FIB concentrations; coefficients with p-values less than 0.05 were consid-

ered significantly different than 0. To further determine if assumptions of linear regression

were met, the Durbin-Watson statistic was assessed to gage the independence of regression

model residuals.

Each FIB was modeled separately; thus, three total models were developed. For EC and

ENT, model predictions were made as the product of the binary part and the regression part of

the hurdle model. Because no TC samples were measured below the LOD, only the regression

part of the hurdle model was applied to model TC concentrations.

Results

High-frequency sampling event data

We collected 125 samples during the high-frequency sampling event. Over 48 hours, we mea-

sured FIB in 96 samples collected during the ‘main’ sampling event at a rate of 1 per 30 min-

utes (Table 1 and Fig 2). Mean TC, EC, and ENT concentrations during the main sampling

event were 319, 60, and 62 most probable number (MPN)/100 ml, respectively. TC, EC, and

ENT concentrations were below the LOD in 0, 10, and 24 samples, respectively. ENT exceeded

the CA regulatory threshold in 12 samples; TC and EC did not exceed their regulatory

Table 1. Summary of FIB data collected every 30 minutes during the ‘main’ sampling event.

FIB TC EC ENT

N 96 96 96

EXC 0 0 12

Below LOD 0 10 24

mean 319 60 62

max 1607 327 1212

std 328 65 150

CV 1.03 1.08 2.4

δ 0.6 (0–4.1) 0.8 (0–5.4) 1.0 (0–17.8)

N—number of samples, EXC—number of FIB regulatory standard exceedances, mean/max—mean and maximum

FIB concentration (in MPN/100 mL) std—standard deviation (in MPN/100 mL), CV—coefficient of variation, δ—

normalized difference between adjacent samples collected 30 minutes apart (i.e. δ30m). Here, the mean δ30m is

presented along with the range in parentheses.

https://doi.org/10.1371/journal.pone.0286029.t001
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thresholds. Serial correlation in the FIB data was insignificant after one hour lag (S1 Fig).

Strong bivariate correlation (Spearman ⍴> 0.5) in concentration was found between all three
FIB types (S2 Table).

An additional 29 samples were collected at a rate of 1 per minute during the ‘sprint’ sam-

pling event between (Table 2 and S2 Fig). Including the samples collected at the top and bot-

tom of the hour (i.e. at 1100 and 1130), mean TC, EC, and ENT concentrations in the ‘sprint’

Fig 2. Time series of FIB data collected during the sampling event. Log10 transformed TC, EC, and ENT concentrations are presented in the top

three subplots. Gray area surrounding the points represents the 95% confidence interval. The dashed lines represent the regulatory threshold, and

samples below the LOD are plotted with a value of 0. Tide level during each sampling point is plotted in the final subplot where gray shading represents

periods during the night.

https://doi.org/10.1371/journal.pone.0286029.g002

Table 2. Summary of FIB data collected every 1 minute during the ‘sprint’ sampling event.

FIB TC EC ENT

N 31 31 31

EXC 0 0 0

Below LOD 0 0 12

mean 1251 191 20

max 3255 389 97

std 906 105 23

CV 0.72 0.55 1.17

δ 0.4 (0–1.6) 0.4 (0–1.1) 0.8 (0–3.8)

N—number of samples, EXC—number of FIB regulatory standard exceedances, mean/max—mean and maximum

FIB concentration (in MPN/100 mL) std—standard deviation (in MPN/100 mL), CV—coefficient of variation, δ—

normalized difference between adjacent samples collected 1 minute apart (i.e. δ1m). Here, the mean δ1min is presented

along with the range in parentheses.

https://doi.org/10.1371/journal.pone.0286029.t002
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sampling event data were 1251, 191, and 20 MPN/100ml, respectively. In 12 of 29 (39%) sam-

ples ENT concentrations were below the LOD; EC and TC concentrations were all above the

LOD. No sprint sample exceeded the FIB regulatory thresholds.

Mean water and air temperatures during the sampling event were 15.1˚C and 15.3˚C,

respectively. Mean salinity was 34.0 and ranged from 33.5 to 34.6. Mean chlorophyll a concen-

tration was 20.8 μg/L and ranged from 0.1 to 178.6 μg/L. Mean turbidity was 58.1 nephelomet-

ric turbidity units (NTU) and ranged from 3.4 to 256.0 NTU. The minimum and maximum

tide level was 0.1 and 1.6 m relative to mean lower low water. The mean and maximum wind

speed was 3.2 and 7.2 m/s. Cloud category was overcast for 43% of the sampling event, clear

for 43%, and partly cloudy for the remainder. Time series of the environmental parameters

measured during the sampling events are plotted in S3 Fig.

Variation in FIB concentrations

ENT concentrations were variable than TC and EC concentrations (Tables 1 and 2). Consider-

ing the ‘main’ sampling event data (i.e. samples collected every 30 minutes) (Table 1), the CV

for ENT concentrations (2.40) was more than twice that for TC (1.03) and EC (1.08). Variation

between adjacent samples was high; mean δ30m for ENT concentrations was 1.0 and ranged

from 0 to 17.8. In other words, ENT concentrations between consecutive samples varied, on

average, the equivalent of the mean concentration across the entire experiment and nearly

twenty-fold that in one incident. There were 30 samples in which the ENT quantification sta-

tus (i.e whether the sample was above or below the LOD) changed in the following sample;

there were 12 samples in which the ENT exceedance status changed. Finally, there were 15

samples in which ENT concentrations did not change in adjacent samples.

There was less variability in FIB concentrations during the 1-minute interval sprint sam-

pling event compared to during the main sampling event data based on CV and δ (Table 2).

For example, the CV of ENT measured during the sprint sampling event was 1.17 while the

mean δ1m was 0.8 (and ranged from 0–3.8). There were 7 (23%) ENT samples in which the

detection status changed in the following sample while no ENT samples changed in exceed-

ance status. Finally, there were 12 samples (39% of samples) in which ENT did not change con-

centration in adjacent samples in the sprint data.

Assessment of δi calculated using a range of sampling intervals (i.e. the 1 per minute sprint

dataset, the 30-minute interval main sampling event dataset, and the downsampled datasets)

showed that the amount of change between adjacent FIB samples increased as sampling inter-

val increased (Fig 3). In other words, samples collected farther apart in time from each other

are more different.

Relationships between FIB and environmental variables

Correlation analysis highlighted the monotonic association between FIB and environmental

variables (S3 Table). Concentrations of all three FIB were most strongly associated (||� 0.2)

with turbidity, tide level, and chlorophyll a concentration. Cross-correlation analysis indicated

that the correlation between FIB and the majority of environmental parameters varied as the

time between observations of each increased (S4A–S4C Fig). In some cases (e.g. ENT concen-

tration and tide, chlorophyll a concentration, and turbidity), the correlation between FIB and

an environmental variable decreased and even switched directions as the time lag between

them increased. In other cases (e.g. ENT concentrations and wind speed), the correlation

between FIB and environmental variables increased with increasing time lag.

Differences in FIB concentrations were also assessed by grouping samples based on the

environmental condition during time of collection. Concentrations of all three FIB were
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significantly higher during periods of low tide (Kruskal-Wallis p< 0.05). No significant differ-

ence was found in FIB concentration measured during the day versus the night, nor between

cloud categories (i.e. clear, overcast, or partly cloudy).

We modeled the relationship between FIB concentrations and environmental variables

(Tables 3–6). Overall (hurdle) model R2 values were 0.46 for TC, 0.82 for EC, and 0.87 for

ENT.

Turbidity, tide level, and alongshore and offshore wind speed were important (i.e. had non-

zero permutation feature importances) in the EC RF model, while turbidity, chlorophyll a con-
centration, water temperature, visibility, the number of hours from noon, and alongshore and

offshore wind speed were important in the ENT RF model. Turbidity was the only significant

(i.e. p-value less than 0.05) variable in the TC GLS model. Turbidity, water temperature, dew

point temperature, and visibility were significant variables in the EC GLS model while chloro-

phyll a concentration, the number of hours from noon, and whether the sky was clear of

clouds were significant variables in the ENT GLS model. Salinity, solar irradiance, air tempera-

ture, air pressure, and whether it was day or nighttime were neither important nor significant

variables in the hurdle models. Variance inflation factors for all variables were less than 5 and

Durbin-Watson statistics were all approximately 2, suggesting that multicollinearity and serial

correlation respectively were adequately accounted for.

Discussion

The goal of this research is to study subhourly FIB variability and to determine the extent in

which FIB concentrations covary with environmental parameters at an enclosed marine

beach. We conducted a 48-hour sampling event at a Central California harbor beach, analyzing

125 water samples for FIB concentrations and collecting associated tide, water quality, and

meteorological data. To our knowledge, this dataset is one of the few multi-day, subhourly FIB

datasets that exist and the first of its kind to be collected at an enclosed location.

A main result from our analysis is that the variability of the FIB concentrations collected at

enclosed beaches can be greater than at open beaches. For example, the CV and mean δ30m of

ENT concentrations collected by Boehm (2007) at Huntington Beach, California (after

Fig 3. Downsampling analysis. Mean δi was calculated using the sprint data (i = 1m) as well as samples downsampled from a 30 minute sampling

interval (30m) to one hour (1H), two hour (2H), three hour (3H), six hour (6H), 12 hour (12H), and 24 hour (24H) intervals. As downsampling interval

increases, there are multiple choices of the first sampling time point. As such, the mean value across all versions of the downsampled data for a given

interval (dots) as well as the standard deviation of those values (shaded regions) are plotted.

https://doi.org/10.1371/journal.pone.0286029.g003
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adjustment from a 10- to 30-min sampling interval) were 1.51 and 0.7, respectively, compared

to 2.40 and 1.0 for ENT in this study (S4 Table). Additionally, Searcy and Boehm (2021)

reported the CV and mean δ30m of FIB concentrations measured at Cowell Beach, California

in 2011 were 1.19 and 0.5 for ENT and 0.92 and 0.4 for EC (compared to 1.08 and 0.8 in this

study) (S4 Table). These results confirm that FIB concentrations at enclosed beaches can be

highly variable and inconsistent; however, the mechanisms by which this occurs remain to be

determined. Variability in FIB concentrations in marine waters can be attributed to intermit-

tent inputs of FIB to the system, dispersion and advection that serve to mix FIB in three

dimensions, and variable fate process that might remove the FIB from the system. Intermittent

FIB sources and variable fate processes are likely to be present at both open and enclosed

marine beaches, however, mixing is likely to be very different at the two types of beaches. A

wave-driven surf zone at an open ocean beach causes intense mixing in all three dimensions in

the surf zone [30, 31]; a surf zone is absent at an enclosed beach. Its absence could allow gradi-

ents in FIB concentrations to persist over the time scales of our sampling. Additional work on

circulation would complement studies like this in the future.

High CV and δ values reinforce the notion that management decisions about beach swim-

ming advisories should not be solely based on single, infrequently-collected samples [15]. Due

to this variation found in the data, it is unlikely that a single sample represents the mean value

across a longer time span (e.g. over the course of a week which is the typical sampling fre-

quency of agencies). Because FIB could be below the LOD in one sample and above the state

regulatory threshold 30 minutes later, public notification of risk based on a single sample is

Table 3. TC descriptive model. The first two columns list each environmental variable and the associated lag with the strongest Spearman correlation to log10-trans-

formed EC concentration. daytime and hours_from_noon were excluded from the temporal lag process. chl and turb values were log10-transformed and all variables were

normalized (i.e. made unitless) prior to model fitting. The Concentration Model columns show the variable coefficients and associated p-values of the generalized least

squares regression model; values where p-value is less than 0.05 are bolded and variables with no value were removed from the model due to high variance inflation factor

(VIF). Note than because TC was never measured below the LOD, no Binary Model (i.e. random forest) was fit.

Model–TC Concentration Model

variable lag (min) coefficient p-value

intercept - 2.249 < 0.001

wtemp 0 0.027 0.734

sal 120 -0.028 0.669

chl* 180 -0.040 0.377

turb* 0 0.354 <0.001

rad 180 0.039 0.484

tide 30 - -

tide_high 60 -0.022 0.769

temp 180 - -

dtemp 0 -0.129 0.128

pres 150 0.026 0.769

wspd 0 - -

awind 30 -0.045 0.316

owind 180 -0.019 0.799

vis 180 0.029 0.638

cloud: overcast 90 -0.145 0.088

cloud: partly 90 -0.051 0.288

cloud: clear 180 0.028 0.720

daytime - -0.153 0.077

hours_from_noon - - -

https://doi.org/10.1371/journal.pone.0286029.t003
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not appropriate. Instead, a statistical aggregation of the results of multiple samples collected

over different periods in the tidal and solar cycles may be more representative and health pro-

tective. Such an aggregation could be a moving average (which would serve to smooth highly

variable concentrations that a single sample provides) or the maximum of a group of samples

(which would be more health conservative). Though likely unfeasible in the present, managers

could begin to manage beaches based on the results of multiple, high-frequency samples as

automation of FIB sampling becomes increasingly accessible [32]. Alternatively, high-fre-

quency sampling events can be a relatively efficient method of developing predictive FIB mod-

els [16] that rely on more easily attainable environmental data as inputs and can be more

accurate than using single samples alone to manage beaches [33].

The difference in variability and concentrations relative to the regulatory thresholds

between each of the three FIB measured at Pillar Point Harbor Beach provides additional

insights for beach managers. ENT was found to be more variable and in higher relative con-

centrations than TC and EC, indicating the importance of measuring more than a single indi-

cator of water quality at beaches. Different FIB types can indicate the presence of

contamination from different sources, and this may not be captured by monitoring only a sin-

gle indicator. Further, this measured difference should also reiterate that FIB are not a fully

representative indicator of health risk; that is, they do not provide information about water

quality that constituents such as heavy metals, pesticides, and microplastics do.

Clear statistical associations between the high-frequency FIB and environmental data help

build an understanding of what environmental mechanisms may be important in driving FIB

Table 4. EC descriptive (hurdle) model. The first two columns list each environmental variable and the associated lag with the strongest Spearman correlation to log10--

transformed EC concentration. daytime and hours_from_noon were excluded from the temporal lag process. chl and turb values were log10-transformed and all variables

were normalized (i.e. made unitless) prior to model fitting. The Binary Model column shows the non-zero permutation feature importances (i.e. the change in model accu-

racy upon fitting a model after randomly shuffling the variable’s data five times) of the random forest model. The Concentration Model columns show the variable coeffi-

cients and associated p-values of the generalized least squares regression model; values where p-value is less than 0.05 are bolded and variables with no value were removed

from the model due to high variance inflation factor (VIF).

Hurdle Model–EC Binary Model Concentration Model

variable lag (min) importance coefficient p-value

intercept - - 1.580 < 0.001

wtemp 120 - 0.234 0.001

sal 120 - 0.086 0.131

chl* 0 - 0.065 0.223

turb* 0 0.038 0.255 0.002

rad 0 - - -

tide 30 0.029 - -

tide_high 60 - -0.013 0.847

temp 0 - - -

dtemp 0 - -0.220 0.008

pres 180 - -0.113 0.111

wspd 0 - - -

awind 30 0.020 -0.031 0.522

owind 0 0.011 - -

vis 30 - 0.127 0.027

cloud: overcast 0 - 0.034 0.691

cloud: partly 180 - -0.072 0.148

cloud: clear 0 - -0.074 0.388

daytime - - -0.053 0.478

hours_from_noon - - - -

https://doi.org/10.1371/journal.pone.0286029.t004
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fate and transport at this beach. They may also be useful for determining strategic time periods

in which to conduct routine FIB monitoring. For example, the tidal association we observed

indicated that higher FIB concentrations may be measured during periods of low tide. Tidal

level may influence both the FIB source at this beach (which may be beach groundwater, bird

feces on the beach, or runoff from outlets around the harbor) and circulation of water which

transports FIB. Wind speed was additionally important, perhaps suggesting that FIB within

the harbor is transported by currents driven independently from tides. Surprisingly, solar irra-

diance–a documented driver of FIB fate [34]—did not appear to be an influential variable,

while visibility, hours since noon, and cloud coverage occurred in the descriptive models with

Table 6. Descriptive model metrics. The Binary Model columns display the number of samples (out of 96) that were measured below the LOD and the accuracy of the

random forest in classifying samples above or below the LOD. Note than because TC was never measured below the LOD, no Binary Model was fit. The Concentration

Model columns display the R2, root mean square error (RMSE) and Durbin-Watson statistic of the GLS models which predict log10-transformed FIB concentration of

samples measured above the LOD. The Overall Model columns display the R2 and root mean square error (RMSE) of the hurdle models which predict log10-transformed

FIB concentration of all samples.

FIB Binary Model Concentration Model Overall (Hurdle) Model

# Below LOD Accuracy R2 RMSE Durbin-Watson R2 RMSE

TC - - 0.464 0.336 2.032 0.464 0.336

EC 10 1.0 0.373 0.303 2.113 0.819 0.271

ENT 22 1.0 0.419 0.333 2.294 0.866 0.294

https://doi.org/10.1371/journal.pone.0286029.t006

Table 5. ENT descriptive (hurdle) model. The first two columns list each environmental variable and the associated lag with the strongest Spearman correlation to

log10-transformed EC concentration. daytime and hours_from_noon were excluded from the temporal lag process. chl and turb values were log10-transformed and all

variables were normalized (i.e. made unitless) prior to model fitting. The Binary Model column shows the non-zero permutation feature importances (i.e. the change in

model accuracy upon fitting a model after randomly shuffling the variable’s data five times) of the random forest model. The Concentration Model columns show the vari-

able coefficients and associated p-values of the generalized least squares regression model; values where p-value is less than 0.05 are bolded and variables with no value

were removed from the model due to high variance inflation factor (VIF).

Hurdle Model–ENT Binary Model Concentration Model

variable lag (min) importance coefficient p-value

intercept - - 1.494 < 0.001

wtemp 30 0.027 -0.010 0.887

sal 180 - -0.002 0.980

chl* 0 0.044 0.200 0.002

turb* 0 0.036 0.074 0.436

rad 60 - -0.108 0.104

tide 60 - - -

tide_high 60 - -0.095 0.181

temp 90 - - -

dtemp 90 - - -

pres 120 - 0.104 0.183

wspd 0 - - -

awind 150 0.022 -0.109 0.102

owind 30 0.002 0.080 0.399

vis 180 0.002 -0.028 0.630

cloud: overcast 150 - - -

cloud: partly 30 - -0.119 0.146

cloud: clear 180 - 0.226 0.014

daytime - - - -

hours_from_noon - 0.004 -0.232 0.003

https://doi.org/10.1371/journal.pone.0286029.t005
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mixed effects on FIB concentrations. This may be due to the general lack of clear, sunny skies

throughout the experiment or FIB being more strongly driven by other fate and transport

mechanisms (e.g. tide and wind driven transportation or when a FIB source exceeds a sink).

Chlorophyll a concentration and turbidity were the most strongly correlated environmental

parameters to FIB concentrations, and were selected as covariates with positive directionality

in all descriptive models. This finding is consistent with other studies of FIB at beaches [33],

and could be linked to sediment deposition and resuspension in the swash zone [35, 36]. How-

ever, chlorophyll concentration and turbidity are not regularly monitored at California

beaches. As they can be more easily measured than FIB using optical sensors, we recommend

that beach monitoring programs begin measuring these parameters as they may be useful in

conserving sampling resources and increasing the accuracy of predictive FIB models.

Additional work may further highlight the utility of a high-frequency sampling approach.

The results presented within come from a single enclosed beach site; additional work is needed

at additional enclosed sites to determine the generalizability of these results. While it is the

summer, dry season in which beach recreation in California is at its highest, beaches are still

utilized by surfers, divers, and fishers in the wet season. A future study could explore the high-

frequency variability of FIB before, during, and after the ‘first flush’, or the first major storm

event of a year. Runoff due to precipitation is a major source of FIB in beach water [37], so it is

imperative that FIB data are collected during wet weather events. Finally, while we have pre-

sented initial statistical analysis on the reported data, they could also be used for predictive

modeling efforts, to design future source tracking studies, or to inform adaptive sampling pro-

grams at the beach whereby FIB is sampled at strategic time points and auxiliary environmen-

tal data are collected.

Altogether we found that conducting high-frequency FIB sampling events is an effective

mechanism by which to understand beach water quality dynamics. If resources are available to

do so, we encourage local governmental agencies, academic groups, tribes, or community

groups at beaches worldwide to use a high-frequency sampling framework to rapidly build an

initial understanding of FIB variability and its link to environmental drivers. The data col-

lected from such sampling efforts could then be used by communities to develop sampling

strategies to manage health risk or inform remediation efforts to abate contamination found at

beaches.

Supporting information

S1 Appendix. Instrument calibration procedures.

(DOCX)

S1 Fig. Partial autocorrelation plots of the FIB time series. The subsequent vertical lines in

each subplot indicate the partial autocorrelation coefficient of the log10-transformed FIB time

series (y-axes) at increasing time lags (x-axes). Correlations above the grey dashed lines indi-

cate significance as determined by Bartlett’s formula. Calculated using the 30-minute interval

‘main’ campaign data (N = 96 samples).

(DOCX)

S2 Fig. Time series of FIB data collected during the ‘sprint’ sampling campaign. Data col-

lected on 2 August 2022 between 1100 and 1130 (N = 31 samples). Log-10 transformed TC,

EC, and ENT concentrations are presented in the top three subplots. Gray area surrounding

the points represent the 95% confidence interval. The dashed lines represent the regulatory

threshold, and samples below the LOD are plotted with a value of 0.

(DOCX)

PLOS ONE High-frequency water quality observations at an enclosed beach

PLOS ONE | https://doi.org/10.1371/journal.pone.0286029 June 2, 2023 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s003
https://doi.org/10.1371/journal.pone.0286029


S3 Fig. Environmental parameter time series. wtemp—water temperature; sal—salinity; chl

—chlorophyll concentration; turb—turbidity; rad—solar irradiance; tide—tide level; temp—

air temperature; wspd—wind speed.

(DOCX)

S4 Fig. A. Cross-correlation between TC and environmental parameters. Spearman rank cor-

relations are plotted, and values significant to p< 0.05 are marked with ‘*’. Color indicates the

strength and direction of the correlation. tide—tide level; wtemp—water temperature; sal—

salinity; turb—turbidity; chl—chlorophyll concentration; rad—solar irradiance; temp—air

temperature; dtemp—dew point temperature; pres—air pressure; wspd—wind speed; owind—

offshore wind speed; awind—alongshore wind speed. B. Cross-correlation between EC and

environmental parameters. Spearman rank correlations are plotted, and values significant to

p< 0.05 are marked with ‘*’. Color indicates the strength and direction of the correlation. tide

—tide level; wtemp—water temperature; sal—salinity; turb—turbidity; chl—chlorophyll con-

centration; rad—solar irradiance; temp—air temperature; dtemp—dew point temperature;

pres—air pressure; wspd—wind speed; owind—offshore wind speed; awind—alongshore wind

speed. C. Cross-correlation between TC and environmental parameters. Spearman rank corre-

lations are plotted, and values significant to p< 0.05 are marked with ‘*’. Color indicates the

strength and direction of the correlation. tide—tide level; wtemp—water temperature; sal—

salinity; turb—turbidity; chl—chlorophyll concentration; rad—solar irradiance; temp—air

temperature; dtemp—dew point temperature; pres—air pressure; wspd—wind speed; owind—

offshore wind speed; awind—alongshore wind speed.

(DOCX)

S1 Table. A: Environmental data stations for third-party sources. B: Environmental variable

considered in multivariate analyses. turb and chl were log10-tranformed prior to model fitting.

All variables except for daytime and hours_from_noon were temporally lagged up to 3 hours

(180 minutes) and correlated to FIB concentrations prior to model fitting.

(DOCX)

S2 Table. Spearman rank correlations between FIB types. Calculated using the 30-minute

interval ‘main’ campaign data (N = 96 samples).

(DOCX)

S3 Table. Spearman rank correlations between FIB and environmental variables. Calcu-

lated using the 30-minute interval ‘main’ campaign data (N = 96 samples).

(DOCX)

S4 Table. Comparison of variability to reported studies. CV is unitless; δ has units of 1 / 30

minutes.

(DOCX)

Acknowledgments

We thank the volunteers who participated in the study for assisting in sample collection and

processing. We thank the Surfrider Foundation San Mateo County Chapter for providing a

mobile laboratory space and the San Mateo County Harbor District for access to their

properties.

Author Contributions

Conceptualization: Ryan T. Searcy, Jacob R. Phaneuf, Alexandria B. Boehm.

PLOS ONE High-frequency water quality observations at an enclosed beach

PLOS ONE | https://doi.org/10.1371/journal.pone.0286029 June 2, 2023 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0286029.s009
https://doi.org/10.1371/journal.pone.0286029


Data curation: Ryan T. Searcy, Jacob R. Phaneuf.

Formal analysis: Ryan T. Searcy.

Funding acquisition: Ryan T. Searcy, Alexandria B. Boehm.

Investigation: Ryan T. Searcy, Jacob R. Phaneuf, Alexandria B. Boehm.

Methodology: Ryan T. Searcy.

Project administration: Alexandria B. Boehm.

Software: Ryan T. Searcy.

Supervision: Alexandria B. Boehm.

Validation: Ryan T. Searcy, Alexandria B. Boehm.

Visualization: Ryan T. Searcy.

Writing – original draft: Ryan T. Searcy.

Writing – review & editing: Ryan T. Searcy, Jacob R. Phaneuf, Alexandria B. Boehm.

References
1. Arnold BF, Schiff KC, Ercumen A, Benjamin-Chung J, Steele JA, Griffith JF, et al. Acute Illness Among

Surfers After Exposure to Seawater in Dry- and Wet-Weather Conditions. American Journal of Epidemi-

ology. 2017 Oct 1; 186(7):866–75. https://doi.org/10.1093/aje/kwx019 PMID: 28498895

2. Haile RW, Witte JS, Gold M, Cressey R, McGee C, Milikan RC, et al. The health effects of swimming in

ocean water contaminated by storm drain runoff. Epidemiology. 1999; 10(4):355–63. PMID: 10401868

3. DeFlorio-Barker S, Wing C, Jones RM, Dorevitch S. Estimate of incidence and cost of recreational

waterborne illness on United States surface waters. Environmental Health. 2018 Jan 9; 17(1):3. https://

doi.org/10.1186/s12940-017-0347-9 PMID: 29316937

4. US EPA O. Clean Water Act Section 303(d): Impaired Waters and Total Maximum Daily Loads

(TMDLs) [Internet]. 2014 [cited 2023 Apr 4]. https://www.epa.gov/tmdl

5. USEPA. Recreational Water Quality Criteria [Internet]. 2012. Report No.: OFFICE OF WATER 820-F-

12-058. http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/

RWQC2012.pdf

6. Heal the Bay. Annual Beach Report Card 2020 [Internet]. 2020 [cited 2020 Oct 28]. https://healthebay.

org/beachreportcard2020/

7. Boehm AB, Grant SB, Kim JH, Mowbray SL, McGee CD, Clark CD, et al. Decadal and Shorter Period

Variability of Surf Zone Water Quality at Huntington Beach, California. Environ Sci Technol. 2002 Sep

1; 36(18):3885–92. https://doi.org/10.1021/es020524u PMID: 12269739

8. Liu L, Phanikumar MS, Molloy SL, Whitman RL, Shively DA, Nevers MB, et al. Modeling the transport

and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan. Environmental Sci-

ence & Technology. 2006; 40(16):5022–8. https://doi.org/10.1021/es060438k PMID: 16955902

9. Kim JH, Grant SB. Public Mis-Notification of Coastal Water Quality: A Probabilistic Evaluation of Posting

Errors at Huntington Beach, California. Environ Sci Technol. 2004 May 1; 38(9):2497–504. https://doi.

org/10.1021/es034382v PMID: 15180043

10. Lucius N, Rose K, Osborn C, Sweeney ME, Chesak R, Beslow S, et al. Predicting E. coli concentrations

using limited qPCR deployments at Chicago beaches. Water Research X. 2019 Feb 1; 2:100016.

11. Francy DS, Brady AMG, Zimmerman TM. Real-time assessments of water quality—A nowcast for

Escherichia coli and cyanobacterial toxins [Internet]. Real-time assessments of water quality—A now-

cast for Escherichia coli and cyanobacterial toxins. Reston, VA: U.S. Geological Survey; 2019 [cited

2020 Sep 24] p. 4. (Fact Sheet; vols. 2019–3061). Report No.: 2019–3061. http://pubs.er.usgs.gov/

publication/fs20193061

12. Searcy RT, Taggart M, Gold M, Boehm AB. Implementation of an automated beach water quality now-

cast system at ten California oceanic beaches. Journal of Environmental Management. 2018 Oct 1;

223:633–43. https://doi.org/10.1016/j.jenvman.2018.06.058 PMID: 29975890

13. Russell TL, Sassoubre LM, Wang D, Masuda S, Chen H, Soetjipto C, et al. A Coupled Modeling and

Molecular Biology Approach to Microbial Source Tracking at Cowell Beach, Santa Cruz, CA, United

PLOS ONE High-frequency water quality observations at an enclosed beach

PLOS ONE | https://doi.org/10.1371/journal.pone.0286029 June 2, 2023 16 / 18

https://doi.org/10.1093/aje/kwx019
http://www.ncbi.nlm.nih.gov/pubmed/28498895
http://www.ncbi.nlm.nih.gov/pubmed/10401868
https://doi.org/10.1186/s12940-017-0347-9
https://doi.org/10.1186/s12940-017-0347-9
http://www.ncbi.nlm.nih.gov/pubmed/29316937
https://www.epa.gov/tmdl
http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/RWQC2012.pdf
http://water.epa.gov/scitech/swguidance/standards/criteria/health/recreation/upload/RWQC2012.pdf
https://healthebay.org/beachreportcard2020/
https://healthebay.org/beachreportcard2020/
https://doi.org/10.1021/es020524u
http://www.ncbi.nlm.nih.gov/pubmed/12269739
https://doi.org/10.1021/es060438k
http://www.ncbi.nlm.nih.gov/pubmed/16955902
https://doi.org/10.1021/es034382v
https://doi.org/10.1021/es034382v
http://www.ncbi.nlm.nih.gov/pubmed/15180043
http://pubs.er.usgs.gov/publication/fs20193061
http://pubs.er.usgs.gov/publication/fs20193061
https://doi.org/10.1016/j.jenvman.2018.06.058
http://www.ncbi.nlm.nih.gov/pubmed/29975890
https://doi.org/10.1371/journal.pone.0286029


States. Environ Sci Technol. 2013 Sep 17; 47(18):10231–9. https://doi.org/10.1021/es402303w PMID:

23924260

14. Yamahara KM, Layton BA, Santoro AE, Boehm AB. Beach sands along the California coast are diffuse

sources of fecal bacteria to coastal waters. Environmental Science & Technology. 2007; 41(13):4515–

21. https://doi.org/10.1021/es062822n PMID: 17695890

15. Boehm AB. Enterococci Concentrations in Diverse Coastal Environments Exhibit Extreme Variability.

Environ Sci Technol. 2007 Dec; 41(24):8227–32. https://doi.org/10.1021/es071807v PMID:

18200844

16. Searcy RT, Boehm AB. A Day at the Beach: Enabling Coastal Water Quality Prediction with High-Fre-

quency Sampling and Data-Driven Models. Environ Sci Technol. 2021 Feb 2; 55(3):1908–18. https://

doi.org/10.1021/acs.est.0c06742 PMID: 33471505

17. Monsen NE, Cloern JE, Lucas LV, Monismith SG. A comment on the use of flushing time, residence

time, and age as transport time scales. Limnology and Oceanography. 2002; 47(5):1545–53.

18. Wuertz S, Wang D, Zamani K, Bombardelli F. An Analysis of Water Circulation in Pillar Point Harbor,

Half Moon Bay, California, based on the Dye Distribution [Internet]. San Mateo Resources Conservation

District; 2011. https://www.researchgate.net/publication/332798586

19. CA State Water Resources Control Board. Pillar Point Harbor and Venice Beach Bacteria TMDL [Inter-

net]. [cited 2022 Dec 23]. https://www.waterboards.ca.gov/rwqcb2/water_issues/programs/TMDLs/

PPH_TMDL.html

20. Oregon State University. PRISM Gridded Climate Data [Internet]. 2022 [cited 2022 Aug 1]. https://

prism.oregonstate.edu

21. Wayne. CA Assembly Bill 411: Beach sanitation: posting. [Internet]. Health and Safety, AB411 1997.

ftp://www.leginfo.ca.gov/pub/97-98/bill/asm/ab_0401-0450/ab_411_bill_19971008_chaptered.pdf

22. Shmueli G. To Explain or to Predict? Statist Sci. 2010 Aug; 25(3):289–310.

23. Welsh AH, Cunningham RB, Donnelly CF, Lindenmayer DB. Modelling the abundance of rare species:

statistical models for counts with extra zeros. Ecological Modelling. 1996 Jul 1; 88(1):297–308.

24. Cha Y, Park SS, Kim K, Byeon M, Stow CA. Probabilistic prediction of cyanobacteria abundance in a

Korean reservoir using a Bayesian Poisson model. Water Resources Research. 2014; 50(3):2518–32.

25. Cutler DR, Edwards TC Jr., Beard KH, Cutler A, Hess KT, Gibson J, et al. Random Forests for Classi-

fication in Ecology. Ecology. 2007; 88(11):2783–92. https://doi.org/10.1890/07-0539.1 PMID:

18051647

26. Breiman L. Random Forests. Machine Learning. 2001 Oct 1; 45(1):5–32.

27. scikit-learn: machine learning in Python—scikit-learn 0.23.2 documentation [Internet]. [cited 2020 Sep

7]. https://scikit-learn.org/stable/

28. Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: Illus-

trations, sources and a solution. BMC Bioinformatics. 2007 Jan 25; 8(1):25. https://doi.org/10.1186/

1471-2105-8-25 PMID: 17254353

29. Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance

measure. Bioinformatics. 2010 May 15; 26(10):1340–7. https://doi.org/10.1093/bioinformatics/btq134

PMID: 20385727

30. Inman DL, Tait RJ, Nordstrom CE. Mixing in the surf zone. Journal of Geophysical Research (1896–

1977). 1971; 76(15):3493–514.

31. Clark DB, Feddersen F, Guza RT. Modeling surf zone tracer plumes: 2. Transport and dispersion. Jour-

nal of Geophysical Research: Oceans [Internet]. 2011 [cited 2020 Sep 14]; 116(C11). Available from:

http://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JC007211

32. Yamahara KM, Demir-Hilton E, Preston CM, Marin R, Pargett D, Roman B, et al. Simultaneous monitor-

ing of faecal indicators and harmful algae using an in-situ autonomous sensor. Lett Appl Microbiol. 2015

Aug; 61(2):130–8. https://doi.org/10.1111/lam.12432 PMID: 25900660

33. Francy DS, Brady AMG, Cicale JR, Dalby HD, Stelzer EA. Nowcasting methods for determining

microbiological water quality at recreational beaches and drinking-water source waters. Journal of

Microbiological Methods. 2020 Jun 6;105970. https://doi.org/10.1016/j.mimet.2020.105970 PMID:

32522491

34. Whitman RL, Nevers MB, Korinek GC, Byappanahalli MN. Solar and temporal effects on Escherichia

coli concentration at a Lake Michigan swimming beach. Appl Environ Microbiol. 2004 Jul; 70(7):4276–

85. https://doi.org/10.1128/AEM.70.7.4276-4285.2004 PMID: 15240311

35. Imamura GJ, Thompson RS, Boehm AB, Jay JA. Wrack promotes the persistence of fecal indicator

bacteria in marine sands and seawater. FEMS Microbiology Ecology. 2011 Jul 1; 77(1):40–9. https://

doi.org/10.1111/j.1574-6941.2011.01082.x PMID: 21385189

PLOS ONE High-frequency water quality observations at an enclosed beach

PLOS ONE | https://doi.org/10.1371/journal.pone.0286029 June 2, 2023 17 / 18

https://doi.org/10.1021/es402303w
http://www.ncbi.nlm.nih.gov/pubmed/23924260
https://doi.org/10.1021/es062822n
http://www.ncbi.nlm.nih.gov/pubmed/17695890
https://doi.org/10.1021/es071807v
http://www.ncbi.nlm.nih.gov/pubmed/18200844
https://doi.org/10.1021/acs.est.0c06742
https://doi.org/10.1021/acs.est.0c06742
http://www.ncbi.nlm.nih.gov/pubmed/33471505
https://www.researchgate.net/publication/332798586
https://www.waterboards.ca.gov/rwqcb2/water_issues/programs/TMDLs/PPH_TMDL.html
https://www.waterboards.ca.gov/rwqcb2/water_issues/programs/TMDLs/PPH_TMDL.html
https://prism.oregonstate.edu
https://prism.oregonstate.edu
ftp://www.leginfo.ca.gov/pub/97-98/bill/asm/ab_0401-0450/ab_411_bill_19971008_chaptered.pdf
https://doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647
https://scikit-learn.org/stable/
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/1471-2105-8-25
http://www.ncbi.nlm.nih.gov/pubmed/17254353
https://doi.org/10.1093/bioinformatics/btq134
http://www.ncbi.nlm.nih.gov/pubmed/20385727
http://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JC007211
https://doi.org/10.1111/lam.12432
http://www.ncbi.nlm.nih.gov/pubmed/25900660
https://doi.org/10.1016/j.mimet.2020.105970
http://www.ncbi.nlm.nih.gov/pubmed/32522491
https://doi.org/10.1128/AEM.70.7.4276-4285.2004
http://www.ncbi.nlm.nih.gov/pubmed/15240311
https://doi.org/10.1111/j.1574-6941.2011.01082.x
https://doi.org/10.1111/j.1574-6941.2011.01082.x
http://www.ncbi.nlm.nih.gov/pubmed/21385189
https://doi.org/10.1371/journal.pone.0286029


36. Grant SB, Sanders BF, Boehm AB, Redman JA, Kim JH, Mrše RD, et al. Generation of Enterococci
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